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Correlations and Causal Relations
Suppose we want to estimate how much the sales of flight tickets will
increase if we decrease their price.
When we observe the price and sales (the number of tickets sold) of
flight tickets, there should be a positive correlation between them.

I The price and sales of the flight tickets are both affected by some event
such as holidays, conference, outbreak of virus.

I However, it is impossible to keep track of all kinds of events that can
potentially impact sales.

I If we use this positive correlation for predicting the sales of tickets, we
can conclude that increase in the price would increase the sales (the
number of tickets sold), which is very unrealistic.

events sales

fuel costs price

Figure: Demand estimation of flight tickets
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Correlations and Causal Relations

The variable ”events” cannot be observed and is the cause positive of
positive correlations. Such variables are called confounders.

The variable ”fuel costs” is independent of the confounder ”events”
(such as holidays). Such variables are called ”Instrumental Variables”
and can be used to estimate causal effects of price on sales.

events sales

fuel costs price

Figure: Demand estimation of flight tickets
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Problem Setting (Flight Ticket Example)
Model

I (sales) = β0 + β1(price) + e
I (price) = δ0 + δ1(fuel costs) + ε
I E[e] = 0 and e ⊥⊥ (events), but e 6⊥⊥ (price) 1

I E[ε|(fuel price)] = 0

Problem
I Estimate β0 and β1

Difficulty
I e 6⊥⊥ (price) makes OLS estimator biased

events sales

fuel costs price

Figure: Demand estimation of flight tickets

1Weaker assumptions are possible.
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Problem Setting

Model
I Y = β′X + e and
X = δ′Z + ε,
where Y, e ∈ R, X,β, ε ∈ Rdx , Z ∈ Rdz , δ ∈ Rdz×dx , and dz ≥ dx.

I E[e] = 0 and e ⊥⊥ Z but E[Xe] 6= 0
I E[Zε] = 0

Problem
I Estimate β.

Difficulty
I E[Xe] 6= 0 makes OLS estimator of β biased

X

YC

Z
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Ordinary Least Squares (OLS)

OLS Estimator
β̂OLS = (X′X)−1X′y = argminβ∈Rdx ||y −Xβ||22

where y = (y1, y2, ..., yn)
′ and

 | | |
x1 x2 ... xn
| | |

′
Inconsistency of OLS Estimator

β̂OLS = (X′X)−1X′(Xβ + e)
p.−→ β + E[X ′X]−1E[X ′e]
6= β
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Two-Stage Least Squares (2SLS)

Consider the model w.r.t. Z
I Y = β′(δ′Z + ε) + e = β′(δ′Z) + (β′ε+ e)
I Since E[β′ε+ e|Z] = 0, OLS of Y ∼ β(δ′Z) gives consistent estimate

of β
I (δ′Z) can be estimated consistently as (δ̂OLS′Z)

using OLS of X ∼ δ′Z
2SLS

I Stage 1: δ̂ = (Z′Z)−1Z′X = argminδ∈Rn×dz ||X− Zδ||2Fr
I Stage 2: β̂IV = (X̄′X̄)−1X̄′y = argminβ∈Rdx ||y − X̄β||22

where X̄ = δ̂′Z
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General Problem Setting
Model

I Y = g(X) + e
I E[e|Z] = 0, but X 6⊥⊥ e

Problem
I Estimate g.

Solution
I Y = E[g(X)|Z] + (E[e|Z] + Y − E[Y |Z])︸ ︷︷ ︸

noise term having zero mean conditionally on Z
I Apply two-stage least squares
I Stage 1: Estimate P[X|Z = · ] as P̂[X|Z = · ]
I Stage 2: Estimate g by applying least squares to Y ∼ Ê[g(X)|Z]

where Ê[g(X)|Z] is calculated using P̂[X|Z = · ]

X

YC

Z
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Kernel Methods and Notations

Instead of using X ∈ X and Z ∈ Z,
use feature ψ(X) ∈ HX and φ(Z) ∈ HZ which satisfy

Notations
I kX , kZ : kernels over X and Z
I HX ,HZ : RKHS with kernel kX , kZ
I ψ(x) := kX (x, · ) ∈ HX : feature map
I φ(z) := kZ(z, · ) ∈ HZ : feature map
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Problem Setting

Model
I Y = h(X) + e = Hψ(X) + e

where Y, e ∈ R = Y, X ∈ X , h ∈ HX and H : HX → R is a linear
operator

I E[e|Z] = 0 but E[ψ(X)e] 6= 0
I E[h(X)|Z = z] can be written as E[h(X)|Z = z] = [Eh](z) using a

linear operator E : HX → HZ .

Problem
I Estimate h ∈ HX
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Problem Setting

Conditional Expectation Operator
I Linear operator E : HX → HZ satisfies [Eh](z) = E[h(X)|Z = z]
I Indeed, the adjoint of E satisfies
E∗φ(z) = E∗kZ(z, · ) = E[ψ(X)|Z = z]

F ∀kX (x, · ) ∈ HX , kZ(z, · ) ∈ HZ ,
〈EkX (x, · ), kZ(z, · )〉HZ
= 〈E[kX (x,X)|Z = · ], kZ(z, · )〉HZ
= E[kX (x,X)|Z = z]
= 〈kX (x, · ),E[kX ( · , X)|Z = z]〉HX
= 〈kX (x, · ), E∗k(z, · )〉HX

Model (re-formulated)
I Y = Hψ(X) + e
ψ(X) = E∗φ(Z) + ε
where Y, e ∈ R = Y, X, ε ∈ X , h ∈ HX ,
H : HX → R and E∗ : HZ → HX are linear operators

I E[e|Z] = 0 but E[ψ(X)e] 6= 0
I E[φ(Z)⊗ ε] = 0.
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Two-Stage Kernel Ridge Regression

Consider conditional expectation w.r.t. Z
I E[Y |Z]

= E[h(X)|Z] + E[e|Z]
= HE[ψ(X)|Z] + E[e|Z]
= HE∗φ(Z) + E[e|Z]

I In other words,
Y = HE∗φ(Z) + (E[e|Z] + Y − E[Y |Z])︸ ︷︷ ︸

noise term having zero mean conditionally on Z
I Thus, if we have E∗, we can use kernel ridge regression of
Y ∼ H(E∗φ(Z)) to estimate H

Two-Stage Kernel Ridge Regression
I Stage 1:
Ênλ = arg min

E:HX→HZ :linear
Enλ (E),

where Enλ (E) = 1
n

∑n
i=1 ||ψ(xi)− E∗φ(zi)||2 + λ||E||2

I Stage 2:
Ĥn
ξ = arg min

H:HX→R:linear
Emξ (H),

where Emξ (H) = 1
m

∑m
i=1 ||ỹi −Hµ(z̃i)||2 + ξ||H||2
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Two-Stage Kernel Ridge Regression

Algorithm[1]
Let X and Z be matrices of n observations. Let ỹ and Z̃ be a vector
and matrix of m observations.

W = KXX(KZZ + nλI)−1KZZ̃ ,

α̂ = (WW ′ +mξKXX)
−1Wỹ,

ĥmξ (x) = (α̂)′KXx

where KXX and KZZ are the empirical kernel matrices.
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Two-Stage Kernel Ridge Regression
Stage 1

I Solution

Ênλ = arg min
E:HX→HZ :linear

1

n

n∑
i=1

||ψ(xi)− E∗φ(zi)||2 + λ||E||2

=
∑
k,l

[(KZZ + nλI)−1]k,l〈ψ(xk), · 〉HXφ(zl)

I Derivation
F By the representer theorem, we can write E : HX → HZ and its

adjoint operator E∗ as
E =

∑
k,lAk,l〈ψ(xk), · 〉HX φ(zl)

E∗ =
∑
k,l Āk,l〈φ(zl), · 〉HZψ(xk)

F Thus,
1
n

∑n
i=1 ||ψ(xi)− E∗φ(zi)||2

= 1
n

∑n
i=1 ||ψ(xi)−

∑
k,lAk,l〈φ(zl), φ(zi)〉HZψ(xk)||2

and
λ||E||2
= tr(EE∗)
=
∑
k,l

∑
k̃,l̃Ak,lĀk̃,l̃〈ψ(xk), ψ(xk̃)〉HX 〈φ(zl), φ(zl̃)〉HZ
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Two-Stage Kernel Ridge Regression

Stage 2:
I Solution

Ĥn
ξ = arg min

H:HX→R:linear

1

m

m∑
i=1

||ỹi −HÊn∗λ φ(z̃i)||2 + ξ||H||2

=

n∑
k=1

α̂k〈ψ(xk), · 〉HX

where

W = KXX(KZZ + nλI)−1KZZ̃ ,

α̂ = (WW ′ +mξKXX)−1Wỹ
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Two-Stage Kernel Ridge Regression

Stage 2:
I Derivation

F Since the range of E∗ is limited to the linear combination of
ψ(x1), ..., ψ(xn) ∈ HX , we can use the representer theorem and write
H : HX → R as H =

∑n
k=1 αk〈ψ(xk), · 〉HX

F Letting W = KXX(KZZ + nλI)−1KZZ̃ , we can write the loss as
1
m

∑m
i=1 ||ỹi −HÊ

n∗
λ φ(z̃i)||2 + ξ||H||2

= 1
m

∑m
i=1 ||ỹi −

∑n
k=1 αk

〈
ψ(xk), Ê

n∗
λ φ(z̃i)

〉
HX
||2 + ξ||

∑n
k=1 αk〈ψ(xk), · 〉HX ||

2

= 1
m

∑m
i=1 ||ỹi −

∑n
k=1 αk

〈
ψ(xk),

∑
k,l[(KZZ + nλI)−1]k,l〈φ(zl̃), φ(z̃i)〉HZψ(x

k̃
)
〉
HX
||2

+ξ||
∑n
k=1 αkψ(xk)||2HX

= 1
m
||y −W ′α||2 + ξα′KXXα
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Two-Stage Kernel Ridge Regression

Causal Effect Prediction:

Ĥn
ξ ψ(xnew) =

n∑
k=1

αk〈ψ(xk), ψ(xnew)〉HX

= α̂′KXxnew
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Toy Problems

Y = h(X) + e, E[e|Z] = 0 but e 6⊥⊥ X (non-linear dependency).

Linear design: h(x) = 4x− 2

Sigmoid design: h(x) = ln(|16x− 8|+ 1) · sgn(x− 0.5)

Demand design: highly non-linear
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Sigmoid Design
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Figure: Kernel IV(left) and Deep IV(right) on the sigmoid design
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Linear and Sigmoid Design
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Figure: Linear(left) and sigmoid(right) designs
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Demand Design
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Figure: Demand design with different parameters (governing the strength of )
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Fin
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Remarks on Theoretical Results

Theorem 2
Under appropriate hypotheses, ∀δ ∈ (0, 1), the following holds w.p.
1− δ:

‖Enλ − Eρ‖HΓ ≤ rE(δ, n, c1) :=

√
ζ1(c1 + 1)

4
1

c1+1

(
4κ(Q+ κ‖Eρ‖HΓ) ln(2/δ)√

nζ1(c1 − 1)

) c1−1
c1+1

λ =

(
8κ(Q+ κ‖Eρ‖HΓ) ln(2/δ)√

nζ1(c1 − 1)

) 2
c1+1

“Note that the convergence rate of Enλ is calibrated by c1, which
measures the smoothness of the conditional expectation operator
E : HX → HZ .”
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Remarks on Theoretical Results

Theorem 4

Under appropriate hypotheses, by choosing λ = n
− 1
c1+1 and

n = m
a(c1+1)
ι(c1−1) where a > 0, following convergence rate is achieved.

1 If a ≤ b(c+1)
bc+1 then E(Ĥm

ξ )− E(Hρ) = Op(m
− ac
c+1 ) with ξ = m−

a
c+1

2 If a ≥ b(c+1)
bc+1 then E(Ĥm

ξ )− E(Hρ) = Op(m
− bc
bc+1 ) with ξ = m−

b
bc+1

“At a = b(c+1)
bc+1 < 2, the convergence rate m−

bc
bc+1 is minimax optimal

while requiring the fewest observations. This statistically efficient rate
is calibrated by b, the effective input dimension, as well as c, the
smoothness of structural operator Hρ.”
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