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TL;DR

● Bayesian filtering & smoothing algorithms (e.g. Kalman filtering, Viterbi for HMMs) for 
a sequence of length n can be O(log n) time!
● Parallel-scan for prefix sum is used.
● Note that the total complexity is O(n).
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Bayesian Filtering & Smoothing

Yn-1

Xn-1

Yn

Xn

Yk

Xk

Yk+1

Xk+1

Yk-1

Xk-1

Y2

X2

Y1

X1X0

● Filtering:
○ Given observations up to now (y_1, ..., y_k), calculate the posterior of current state x_k
○ i.e. calculate p(x_k| y_1, ..., y_k)

● Smoothing:
○ Given observations of whole sequence (y_1, ..., y_n), calculate the posterior of any state x_k
○ i.e. calculate p(x_k| y_1, ..., y_n)
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Examples of (Probabilistic) State Space Models

● Hidden Markov models (HMMs)
○ Discrete state x_k
○ Arbitrary emission model p(y_k| x_k)
○ Applications include: speech recognition, handwriting recognition

● Linear Gaussian state space models
○  
○  
○ Applied to Kalman filtering & smoothing for object tracking



The Classic Bayesian Filtering & Smoothing:
the Forward-Backward Algorithm
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Application of Smoothing: the EM algorithm

analytical posterior 
required here



Application of Smoothing: the EM algorithm

● Maximum likelihood estimator θ of the following state space model can be obtained 
by the EM algorithm:



Prefix Sum



An Example of Cumulative Sum 

● Consider cumulative sum of [6, 4, 16, 10, 16, 14, 2, 8], which is 
[6, 6 + 4, 6 + 4 + 16, ...,  6 + 4 + 16 + 10 + 16 + 14 + 2 + 8]

● For sequence of length n, this can take O(log n) time with parallel scan!



Parallel Scan: An Example of Cumulative Sum 
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Bayesian Filtering as Prefix Sum



Bayesian Smoothing as Prefix Sum



Benchmarks

● Linear Gaussian state space model
○ Kalman filter (KF)

■ filtering
■ forward algorithm

○ Rauch-Tung-Striebel (RTS)
■ smoothing
■ backward algorithm

with parallelization
without parallelization
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Sketch of Proof
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By definition, we can see
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