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Motivation

Several influential papers on offline reinforcement learning (RL) in
2019-2020:

▶ DualDice [2]
▶ AlgaeDice [4]
▶ GenDice [5]
▶ ValueDice [1]
▶ and their summary [3] (today’s paper)

Dice (stationary DIstribution Correction Estimation) leverages
▶ The linear structure of RL
▶ Fenchel-Rockafellar duality and Lagrange Duality

Similar ideas are used in ”distributionally robust” methods and neural
estimation of f-divergence.
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Fenchel Conjugate

The Fenchel conjugate f∗ of function f : Ω → R is defined as

f∗(y) := max
x∈Ω

⟨x, y⟩ − f(x),

where ⟨·, ·⟩ denotes the inner product defined on Ω.

For a proper, convex, lower semi-continuous f , one has duality
f∗∗ = f ; i.e,

f(x) = max
y∈Ω∗

⟨x, y⟩ − f∗(y),

where Ω∗ denotes the domain of f∗.
▶ f is proper iff {x ∈ Ω : f(x) < ∞} is non-empty and f(x) > −∞ for

all x ∈ Ω.
▶ f is lower semi-continuous iff {x ∈ Ω : f(x) > α} is an open set for all

α ∈ R.
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Fenchel Conjugate

Functions Conjugates

1
2x

2 1
2y

2

δ{a}(x)
1 ⟨a, y⟩

δR+(x) δR−(y)

⟨a, x⟩+ b · f(x) b · f∗
(y−a

b

)
f(ax) f∗(

y
a)

f(x+ b) f∗(y)− ⟨b, y⟩
Df (x∥p) (unrestricted x) Ez∼p[f∗(y(z))]

DKL(x||p) where x ∈ ∆(Z) logEZ∼p[exp y(Z)]

Table: Common functions and their Fenchel conjugates.

1δC is an indicator function of that is zero if x ∈ C and infinity otherwise.
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f-divergences

For a convex function f and distributions p, q over some domain Z,
the f -divergence between them is defined as,

Df (p∥q) = Ez∼q

[
f

(
p(z)

q(z)

)]
.

▶ Non-negativity:

Df (p∥q) ≥ 0,Df (p∥q) = 0 iff p = q

▶ Variational representation (not used):

Df (p∥q) = sup
Ω→effdom(f∗)

Ep[g]− Eq[f∗ ◦ g]

▶ Examples: KL-divergence, total variation, α-divergences
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Fenchel-Rockafellar Duality

Primal problem:

min
x∈Ω

Jprimal(x) := f(x) + g(Ax),

where f, g : Ω → R are convex, lower semi-continuous functions, and
A is a linear operator (e.g, a matrix).

Dual problem:

max
y∈Ω∗

Jdual := −f∗(−A∗y)− g∗(y),

where we use A∗ to denote the adjoint linear operator of A
▶ A∗ is the linear operator for which ⟨y,Ax⟩ = ⟨A∗y, x⟩, for all x, y.
▶ In the common case of A simply being a real-valued matrix, A∗ is the

transpose of A.
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Fenchel-Rockafellar Duality

Under mild conditions (constraint qualification), we can derive the
above as

min
x∈Ω

Jprimal(x) = min
x∈Ω

f(x) + g(Ax)

= min
x∈Ω

max
y∈Ω∗

f(x) + ⟨y,Ax⟩ − g∗(y)

= max
y∈Ω∗

{min
x∈Ω

f(x) + ⟨y,Ax⟩} − g∗(y)

= max
y∈Ω∗

{−max
x∈Ω

⟨−A∗y, x⟩ − f(x)} − g∗(y)

= max
y∈Ω∗

−f∗(−A∗y)− g∗(y)

= max
y∈Ω∗

Jdual(y).

The relationship between primal and dual solutions (when ∇f∗ exists)

x∗ := argmin
x∈Ω

Jprimal(x) = ∇f∗(−A∗y
∗)
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Two different Dual Problems of Linear Constraints)

Fenchel-Rockafellar dual

min
x

f(x) s.t. Ax = b

= min
x

f(x) + δ{b}(Ax)

= max
y

−f∗(−A∗y)− ⟨b, y⟩

Lagrange dual

min
x

f(x) s.t. Ax = b

= min
x

f(x) + max
y

yT (Ax− b)

= min
x

max
y

f(x) + yT (Ax− b)
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A Quick Introduction to Reinforcement Learning

Markov Processes
▶ Model: (S, T (s′|s), µ0(s0))

⋆ S: a set of all (discrete) states
⋆ T (s′|s): transition probability Pr(St+1 = s′|St = s)
⋆ µ0(s): probability of initial state Pr(S0 = s)

▶ Realization: {St}∞t=0
▶ Recursive formulae for Pr(St = s):

⋆ Pr(St+1 = s′) =
∑

s∈S T (s′|s) Pr(St = s)
⋆ Using transition operator P and its adjoint P∗ defined as

P : f(s) 7→
∑
s′∈S

f(s′)T (s′|s) = E[f(S′)|S = s],

P∗ : f(s) 7→
∑
s′∈S

T (s|s′)f(s′),

the recursive formula for pt(s) := Pr(St = s) simplifies to

pt+1(s) = P∗pt(s)
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A Quick Introduction to Reinforcement Learning
Markov Decision Processes (MDPs)

▶ Model: (S,A, T (s′|s, a), µ0(s0), R(s, a)) and policy π(a|s)
⋆ A: a set of all (discrete) actions
⋆ T (s′|s, a): transition probability Pr(St+1 = s′|St = s,At = a)
⋆ R(s, a): reward function that gives reward rt = R(st, at)
⋆ π(a|s): action probability of Pr(At = a|St = s)

▶ Realization: {(St, At)}∞t=0
▶ Recursive formulae for Pr(St = s,At = a):

⋆ Pr(St+1 = s′, At+1 = a′) = π(a′|s′)
∑

s∈S,a∈A T (s′|s, a) Pr(St =
s,At = a)

⋆ Using transition operator Pπ and its adjoint Pπ
∗ defined as

Pπ : f(s, a) 7→
∑

s′∈S,a′∈A

f(s′, a′)π(a′|s′)T (s′|s, a) = E[f(S′, A′)|S′ = s,A′ = a],

Pπ
∗ : f(s, a) 7→

∑
s′∈S,a′∈A

π(a|s)T (s|s′, a′)f(s′, a′),

the recursive formula for pt(s, a) := Pr(St = s,At = a) simplifies to

pt+1(s, a) = Pπ
∗ pt(s, a)
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A Quick Introduction to Reinforcement Learning

Reinforcement Learning (RL)
▶ Given MDP (S,A, T (s′|s, a), µ0(s0), r(s, a)) and discount rate

0 < γ < 1, find an optimal policy by solving

max
π

ρ(π) := (1− γ)E[
∞∑
t=0

γtR(St, At)]

Online / Offline RL
▶ Online RL: You can generate new sample trajectories {(St, At)}∞t=0

from an arbitrary (or sometimes fixed) policy π(a|s)
▶ Offline RL: You can only access the recorded sample trajectories

{(St, At)}∞t=0 from some policy π(a|s)
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Offline Policy Evaluation with Distribution Correction

Assumptions
▶ Observable data: (S′, A, S) ∼ D where (S,A) ∼ dD(s, a) and

S′|S = s,A = a ∼ T (s′|s, a)
Offline Estimation of ρ(π) := (1− γ)E[

∑∞
t=0 γ

tr(St, At)]
▶ Let us define dπ(s, a) := (1− γ)

∑∞
t=0 γ

t Pr(St = s,At = a),
so that ρ(π) = E(S,A)∼dπ [r(S,A)].

▶ If we can estimate ζ(s, a) := dπ(s,a)
dD(s,a)

, we can estimate policy value

ρ(π) as

ρ̂(π) =
1

N

N∑
n=1

ζ̂(Sn, An)r(Sn, An)

where (Sn, An) ∼ dD.
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Difficulty of Path-wise Distribution Correction
Assumption: D = {{(S(n)

t , A
(n)
t )}∞t=0 : n = 1, . . . , N} sampled from

the MDP with base policy π0 so that dD = dπ0

Distribution correction:

ρ(π) = (1− γ)

∞∑
t=0

γtEπ[r(St, At)]

= (1− γ)

∞∑
t=0

γtEπ0

[(
Pr({(Sτ , Aτ )}tτ=0|π)
Pr({(Sτ , Aτ )}tτ=0|π0)

)
r(St, At)

]

= (1− γ)
∞∑
t=0

γtEπ0

[
t∏

τ=0

(
π(Aτ |Sτ )

π0(Aτ |Sτ )

)
r(St, At)

]

▶ The empirical version of the above tends to have high variance, as

estimated product term
∏t

τ=0

(
π(Aτ |Sτ )
π0(Aτ |Sτ )

)
is often difficult.
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Estimation of Distribution Correction ζ = dπ/dD

Sufficient condition of dπ:

dπ(s, a) = (1− γ)π(a|s)µ0(s) + γPπ
∗ d

π(s, a) ∀(s, a) ∈ S ×A

▶ It follows from dπ(s, a) := (1− γ)
∑∞

t=0(γPπ
∗ )

t(π × µ0)(s, a)

Solve the equivalent optimization problem:

min
d

Df (d∥dD)

subject to the above equality constraints.
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Estimation of Distribution Correction ζ = dπ/dD

Primal:

min
d

Df (d∥dD) s.t. (1− γPπ
∗ )d(s, a) = (1− γ)π(a|s)µ0(s)

Fenchel-Rockafellar Dual:

max
Q:S×A→R

−⟨(1− γ)π(a|s)µ0(s), Q(S,A)⟩

− E(S,A)∼dD [f∗ ((γPπ − 1)Q(S,A))]

= max
Q:S×A→R

−(1− γ)E(S,A)∼π(a|s)µ0(s)[Q(S,A)]

− E(S,A)∼dD [f∗ ((γPπ − 1)Q(S,A))]

▶ The primal solution can be recovered from dual solution Q∗(s, a) as

dπ(s, a) = dD(s, a) · f ′
∗ ((γPπ − 1)Q(s, a))

⋆ This is because dπ(s, a) = d
dx(s,a)

E(S,A)∼dD [f∗(x)]
∣∣
x=(γPπ−1)Q∗
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Estimation of Distribution Correction ζ = dπ/dD

Lagrange Dual:

min
d:S×A→R

max
Q:S×A→R

E(S,A)∼dD

[
f

(
d(S,A)

dD(S,A)

)]
+

〈
Q(s, a), (1− γPπ

∗ )

(
d(s, a)

dD(s, a)

)
dD(s, a)− (1− γ)π(a|s)µ0(s)

〉
= min

ζ:S×A→R
max

Q:S×A→R
E(S,A)∼dD [f(ζ(S,A))]

− (1− γ)E(S,A)∼π(a|s)µ0(s)[Q(s, a)]

+ E(S,A)∼dD(s,a)[ζ(S,A)(1− γPπ)Q(S,A)]⟩
= min

ζ:S×A→R
max

Q:S×A→R
E(S,A)∼dD [f(ζ(S,A))]

− (1− γ)E(S,A)∼π(a|s)µ0(s)[Q(s, a)]

+ E (S′,A′,S,A)

∼π(a′|s′)T (s′|s,a)dD(s,a)

[ζ(S,A)Q(S,A)− ζ(S,A)γQ(S′, A′)]

where we used reparametrization ζ = d/dD
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Extensions

Undiscounted RL (γ ↗ 1)

Policy Optimization

Imitation Learning
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Undiscounted RL

We are interested in estimating

ρ(π) := lim
γ↗1

(1− γ)E[
∞∑
t=0

γtr(St, At)]

Stationary distribution correction
▶ Let us define

dπ(π)(s, a) := lim
γ↗1

(1− γ)E[
∞∑
t=0

γt Pr(St = s,At = a)]

so that ρ(π) = E(S,A)∼dπ [r(S,A)].
▶ The sufficient conditions for dπ are

dπ = Pπ
∗ d

π and
∑

s∈S,a∈A
dπ(s, a) = 1
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Undiscounted RL

Primal:

min
d

Df (d∥dD) s.t. dπ = Pπ
∗ d

π and
∑

s∈S,a∈A
dπ(s, a) = 1

Fenchel-Rockafellar Dual:

max
λ∈R,Q:S×A→R

λ− E(S,A)∼dD [f∗ (λ+ (Pπ − 1)Q(S,A))]

▶ The primal solution can be recovered from dual solution λ∗, Q∗(s, a) as

dπ(s, a) = dD(s, a) · f ′
∗ (λ

∗ + (Pπ − 1)Q(s, a))
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Undiscounted RL

Lagrange Dual2:

min
d:S×A→R

max
λ∈R,Q:S×A→R

E(S,A)∼dD

[
f

(
d(S,A)

dD(S,A)

)]
+

〈
Q(s, a), (1− Pπ

∗ )

(
d(s, a)

dD(s, a)

)
dD(s, a)

〉

+ λ

1−
∑

s∈S,a∈A

(
d(s, a)

dD(s, a)

)
dD(s, a)


= min

ζ:S×A→R
max

λ∈R,Q:S×A→R
E(S,A)∼dD [f(ζ(S,A))] + λ

− E (S′,A′,S,A)

∼π(a′|s′)T (s′|s,a)dD(s,a)

[
ζ(S,A) · (λ+Q(S′, A′)−Q(S,A))

]
where we used reparametrization ζ = d/dD

2This is called GenDice
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Imitation Learning

Problem Setting:

▶ Assumption: D = {{(S(n)
t , A

(n)
t )}∞t=0 : n = 1, . . . , N} sampled from

the MDP with base policy π0 so that dD = dπ0

▶ We are interested in imitating π0 with π∗ so that

π∗ = argmin
π

DKL(d
π∥dD)
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Imitation Learning

Fenchel-Rockafellar Dual (Donsker-Varadhan representation):

DKL(d
π∥dD)

= min
d∈∆(S×A)

DKL(d∥dD)

s.t. d(s, a) = (1− γ)π(a|s)µ0(s) + γPπ
∗ d(s, a)

= max
ν:S×A→R

− logE(S,A)∼dD [exp ((1− γPπ)ν(S,A))]

+ (1− γ)E(S,A)∼π(a|s)µ0(s)[ν(S,A)]

Imitation Learning3:

π∗ =argmin
π

max
ν:S×A→R

− logE(S,A)∼dD [exp ((1− γPπ)ν(S,A))]

+ (1− γ)E(S,A)∼π(a|s)µ0(s)[ν(S,A)]

3This is called ValueDice
Kei Ishikawa Reinforcement Learning via Fenchel-Rockafellar DualityJournal Club on January 26, 2023 27 / 31



Policy Optimization

Problem Setting:
▶ We are interested in finding maximizer

π∗ = argmax
π

ρ(π)−Df (d
π∥dπ0)

of regularized policy value
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Policy Optimization

Fenchel-Rockafellar Dual:

ρ(π)−Df (d
π∥dD)

= max
d:S×A→R

Df (d∥dD)− E(S,A)∼d[r(S,A)]

s.t. d(s, a) = (1− γ)π(a|s)µ0(s) + γPπ
∗ d(s, a)

= min
Q:S×A→R

E(S,A)∼dD [f∗ (R(S,A)− (1− γPπ)Q(S,A))]

+ (1− γ)E(S,A)∼π(a|s)µ0(s)[Q(S,A)]

Policy Optimization4:

π∗ =argmax
π

min
Q:S×A→R

E(S,A)∼dD [f∗ (R(S,A)− (1− γPπ)Q(S,A))]

+ (1− γ)E(S,A)∼π(a|s)µ0(s)[Q(S,A)]

4This is called AlgaeDice
Kei Ishikawa Reinforcement Learning via Fenchel-Rockafellar DualityJournal Club on January 26, 2023 29 / 31



(My Personal) Take Aways

Convex optimization is not only for linear/kernelized models

Reinforcement learning has a useful linear structure

Neural networks can be used to approximately solve these problems

Interpreting the conditional expectation as a linear operator and
taking its adjoint can be a useful trick
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