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Motivation

@ Several influential papers on offline reinforcement learning (RL) in
2019-2020:
DualDice [2]
AlgaeDice [4]
GenDice [5]
ValueDice [1]
and their summary [3] (today's paper)
@ Dice (stationary Dlstribution Correction Estimation) leverages
> The linear structure of RL
» Fenchel-Rockafellar duality and Lagrange Duality
Similar ideas are used in "distributionally robust” methods and neural
estimation of f-divergence.
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Fenchel Conjugate

@ The Fenchel conjugate f, of function f: ) — R is defined as

j;(y):zzrnax(x,y)-—»f(x),

zEQ

where (-, -) denotes the inner product defined on €.

@ For a proper, convex, lower semi-continuous f, one has duality
fax = [ e,
f(x) = max(z, y) — fi(y),

yeN*

where 2* denotes the domain of f,.
» fis proper iff {x € Q: f(x) < oo} is non-empty and f(x) > —oco for
all z € Q.
> f is lower semi-continuous iff {z € Q: f(x) > a} is an open set for all
a e R
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Fenchel Conjugate

Functions Conjugates
2@’ 2y
Ogay ()t (a,y)
5]R+ (x) ORr_ (y)
(a,z) +b- f(z) b fo (52)
[f(az) f«(%)
flz+0) fe(y) = (b,y)
Dy(z|lp) (unrestricted x) E.p[fe(y(2))]
Dk, (z||p) where x € A(Z) | logEzplexpy(2)]

Table: Common functions and their Fenchel conjugates.

1§ is an indicator function of that is zero if z € C' and infinity otherwise:
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f-divergences

@ For a convex function f and distributions p, ¢ over some domain Z,
the f-divergence between them is defined as,

Dy (plg) = Eang [f (%)] |

» Non-negativity:
Dy (pllg) = 0,Dy(pllg) = 0 iff p = ¢
» Variational representation (not used):

Df(pllg) =  sup  Eylg] — Eq[fs 0 g]
Q—effdom(fy)

» Examples: KL-divergence, total variation, a-divergences
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Fenchel-Rockafellar Duality

@ Primal problem:

Iglelg Jprimal(x) = f($) + g(Ax)a

where f,g: ) — R are convex, lower semi-continuous functions, and
A is a linear operator (e.g, a matrix).

@ Dual problem:

max Jqual 1= _f*(_A*y) - g*(Q)»
yeN*
where we use A, to denote the adjoint linear operator of A

» A, is the linear operator for which (y, Az) = (A.y, x), for all z,y.

> In the common case of A simply being a real-valued matrix, A, is the
transpose of A.
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Fenchel-Rockafellar Duality

@ Under mild conditions (constraint qualification), we can derive the

above as
glelgrll Jprimal(x) = glelg f(x) + g(A.T)
= minmax f(@) + (y, Az) — g«(y)
= max{min f(z) + (y, Az)} — 9.(¥)

= ;%%2)5{_ 1;125{(—14*?/, 33> — f(x)} - g*(y)

= Z,I,Ié%z)f —f*(—A*y) — G« (y)

= maxJ .
e dual(y)

@ The relationship between primal and dual solutions (when V f, exists)

Tt = arg Inel(IZl Jprimal(x) = Vf*(—A*y*)
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Two different Dual Problems of Linear Constraints)

@ Fenchel-Rockafellar dual
min f(z) s.t. Az =5
x
= min f(z) + ) (Az)
x
= max —fu(=Ay) = (b.y)
o Lagrange dual
min f(x) s.t. Az =5
= min f(z) + maxy” (Az — b)
x Yy

= minmax f(z) + y? (Az — b)
x oy
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A Quick Introduction to Reinforcement Learning

@ Markov Processes

> Model: (SaT(S,|S)7MO(SO))
* S: a set of all (discrete) states
* T(s'|s): transition probability Pr(Si+1 = s'|S: = s)
* po(s): probability of initial state Pr(Sy = s)

» Realization: {S;}22,

» Recursive formulae for Pr(S; = s):
* Pr(Siy1=5") =3 s T(ss) Pr(S; = s)
* Using transition operator P and its adjoint P, defined as

P:f(s) = Y f()T(s']s) = E[f(S)|S = s,

s'eS

Po: f(s) = D T(sls)F(s),

s'eS
the recursive formula for p;(s) := Pr(S; = s) simplifies to

Pr+1(8) = Pupi(s)
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A Quick Introduction to Reinforcement Learning

@ Markov Decision Processes (MDPs)

» Model: (S, A,T(s'|s,a),uo(so), R(s,a)) and policy 7(als)
* A: a set of all (discrete) actions
* T(s'|s,a): transition probability Pr(S;+1 = §'|S: = s, At = a)
* R(s,a): reward function that gives reward r; = R(s¢,a:)
* m(als): action probability of Pr(A; = a|S; = s)

> Realization: {(S;, A¢)}52,

» Recursive formulae for Pr(S; = s, Ay = a):
* Pr(Sit1 =58, Avp1 =a') = w(d|s) ZSGS,aEA T(s'|s,a) Pr(S; =

s,A: = a)

* Using transition operator P™ and its adjoint P} defined as

P f(ssa)= Y f(sa)m(d'|s)T(s|s,a) = E[f(S", A)|S" = s,

s’eS,a’e A

Prif(s,a) = > wlals)T(sls',a)f(s',a"),

s’eS,a’e A
the recursive formula for p¢(s, a) := Pr(S; = s, Ay = a) simplifies to
per1(s,a) = Pipi(s,a)
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A Quick Introduction to Reinforcement Learning

@ Reinforcement Learning (RL)
» Given MDP (S, A, T(s']s,a), 1o(so), r(s,a)) and discount rate
0 < v < 1, find an optimal policy by solving

o0

max p(m) := (1 = )E[D_ 7' R(St, Ar)]
t=0
@ Online / Offline RL

» Online RL: You can generate new sample trajectories {(St, A¢)}22,
from an arbitrary (or sometimes fixed) policy 7(als)

» Offline RL: You can only access the recorded sample trajectories
{(St, Ap) }2,, from some policy 7(als)
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Offline Policy Evaluation with Distribution Correction

@ Assumptions
» Observable data: (S, A, S) ~ D where (S, A) ~ dP(s,a) and
S'NS=s,A=a~T(s|s,a)
o Offline Estimation of p(m) := (1 — Y)E[>_; o v'r(St, Ar)]
> Let us define d™(s,a) := (1 —7) Y ;o V' Pr(Se = s, Ay = a),
so that p(m) = E(s,4)~ax [1(S, A)].

» If we can estimate ((s,a) := 5 ((ss ‘;)) we can estimate policy value

p(m) as
1 N
:NZ C(Sns Ap)r(Sn,s Ay)

where (S, A,) ~ dP
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Difficulty of Path-wise Distribution Correction

@ Assumption: D = {{(St("),Agn))},?iO :n=1,...,N} sampled from
the MDP with base policy 7 so that dP = d™
@ Distribution correction:

ol ZyE (St, Ay)]
Z”tE’TO (e >)}ioo||;)>> )

_ w7 (A8 Y
w;vEm I (70 355 ) e

» The empirical version of the above tends to have high variance, as

estimated product term Hizo (7:;(&"[5;7))) is often difficult.
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Estimation of Distribution Correction ¢ = d™/dP

o Sufficient condition of d™:

d"(s,a) = (1 —y)mw(als)uo(s) + YPId"(s,a) V(s,a) € S x A

> It follows from d™(s,a) := (1 — ) > o (YPI) (T X po)(s, a)

@ Solve the equivalent optimization problem:
min Dy (d]d")

subject to the above equality constraints.
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Estimation of Distribution Correction ¢ = d™/dP

@ Primal:
min Dy (dl|d”) st. (1 —~yPI)d(s,a) = (1 = y)m(als)po(s)
@ Fenchel-Rockafellar Dual:
omax o —(( = )m(als)uo(s), Q(S, 4))
= E(s a)uar [f+ (WPT = 1)Q(S, A))]
= max —(1—7)Eg a)ur(a]s)uo(s) [Q(S; A)]

Q:SxA—R
— E(&A)wdD [f* ((’Y'Pﬂ- - ]-)Q(Sv A))]

» The primal solution can be recovered from dual solution Q*(s,a) as

dﬂ-(sv a) = dD(Sva) ) fx/< ((’)/Pﬂ- - 1)@(570'))

* This is because d"(s,a) = ﬁE(s,A)NdD [fo(@)] |o=(vPm—1)q
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Estimation of Distribution Correction ¢ = d™/dP
@ Lagrange Dual:
d(S, A)
P e o R G [f (dD(S, A)ﬂ
d
- <Q<s,a>, (1= 9P (s ) dP(s.0) = (1 = 2)(alshin(e) )

- NS SXA—>RQ gg?él}:ﬂ{ E(s,4)~ar [f(C(S,A))]

- (1 - )E(S,A)Nw(a\s)uo(s) [Q(S) a)]
+ E(5,4)~d? (s,0) [C (S, A) (1 = vPT)Q(S, A)])

=, Jnin oA o Etsayar [F(C(S, 4))]

— (1 = 7)E(s,4)~r(als)uo(s) [R5, a)]

+E (87,A,S,A) [C(Sa A)Q(Sv A) - C(Sv A)VQ(Sla A/)]
~m(a’'|s")T(s'|s,a)dP (s,a)

where we used reparametrization ¢ = d/dP
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Extensions

e Undiscounted RL (y 1)
@ Policy Optimization

@ Imitation Learning
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Undiscounted RL

@ We are interested in estimating

p(m) = yfrq(l - V)E[; 7' (S, Ar)]

@ Stationary distribution correction
> Let us define

d™(m)(s,a) := li/ml(l - W)E[Z 7' Pr(S; = s, Ay = a)]
7 =0

so that p(7) = E(g,4)~ar [1(S, A)].
» The sufficient conditions for d™ are

d"=PId"and >  d"(s,a)=1
s€S,acA
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Undiscounted RL

@ Primal:

: D T __ DT T us _
minDy(d|[d”) st. d™ =PTd" and > d'(s,a) =1
s€S,acA

@ Fenchel-Rockafellar Dual:

AeR’é{lng_)R)\ —E(g ayar [fx (A + (PT = 1)Q(S, A))]

» The primal solution can be recovered from dual solution A*, Q*(s,a) as

d"(s,a) = d”(s,a) - fL (N + (PT = 1)Q(s,a))
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Undiscounted RL

o Lagrange Dual?:

P AER, crznng%RE(S’A)”dD [f (%)]
+ <Q(s,a), (1—PI) (di(s’a) ) dD(s,a)>

d(s,a D
+A1- d”(s,a)
[z, (@) o)

= min max E(s.a)~ar [f(C(S, A))] + A

:SXA—=RAER,Q:SXA—=R

—E (8,A47,8,4) [€(8,4) - (A +Q(S", 4) — Q(S, 4))]
~m(a’|s")T(s'|s,a)dP (s,a)

where we used reparametrization ¢ = d/dP

2This is called GenDice
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Imitation Learning

@ Problem Setting:

> Assumption: D = {{(S{™, A™)}52,:n=1,...,N} sampled from
the MDP with base policy 7o so that dP = d™
» We are interested in imitating mg with 7* so that

7* = arg min Dy, (d"||d")
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Imitation Learning

e Fenchel-Rockafellar Dual (Donsker-Varadhan representation):

Dk (d7||dP)

= in  Dgp(d||dP
e Dreldld”)

s.t. d(s,a) = (1 —y)m(als)uo(s) +vPid(s, a)
= max - log E(g a)~ar [exp (1 —yP™)v(S, 4))]
+ (1 - V)E(S,A)Nﬂ'(ab)uo(s) [V(S7 A)]

o Imitation Learning?:

7 = arg min max - — log E (g 4y~qr [exp (1 —yP™)v(S, A))]

T v:SX

+ (1 - V)E(S,A)Nw(ﬂs)uo(s) [V(Sa A)]

3This is called ValueDice
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Policy Optimization

@ Problem Setting:
» We are interested in finding maximizer

7 = argmax p(m) — D (d"||d"™)

of regularized policy value
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Policy Optimization
@ Fenchel-Rockafellar Dual:

p(m) = Dy(d"||dP)

= max Dy(d]dP) — E(s ayualr(S, A)]

s.t. d(s,a) = (1 —y)m(a|s)uo(s) + YPrd(s,a)
= Q:SHXIEA{;RE(S,A)WD [f« (R(S, A) — (1 =yPT)Q(S, A))]
+ (1 = Y)E(5,4)~r(als)uo(s) [Q(S, A)]
@ Policy Optimization*:
7" =argmax min B 4 qp [fs (R(S, 4) = (1 —yPT)Q(S, A))]

T Q:SxA—-R
+ (1 = VE(s,A)y~r(als)uo(s) [Q(S, A)]

*This is called AlgaeDice
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(My Personal) Take Aways

Convex optimization is not only for linear/kernelized models
Reinforcement learning has a useful linear structure

Neural networks can be used to approximately solve these problems

Interpreting the conditional expectation as a linear operator and
taking its adjoint can be a useful trick
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