Reinforcement Learning via Fenchel-Rockafellar Duality

Kei Ishikawa

Journal Club on January 26, 2023

Kei Ishikawa

Reinforcement Learning via Fenchel-Rockafell Journal Club on January 26, 2023 1/31

< ∃⇒

Motivation

- Several influential papers on offline reinforcement learning (RL) in 2019-2020:
 - DualDice [2]
 - AlgaeDice [4]
 - GenDice [5]
 - ValueDice [1]
 - and their summary [3] (today's paper)
- Dice (stationary DIstribution Correction Estimation) leverages
 - The linear structure of RL
 - Fenchel-Rockafellar duality and Lagrange Duality

Similar ideas are used in "distributionally robust" methods and neural estimation of f-divergence.

- 2 Background in RL
- 3 Offline Policy Evaluation
- 4 Extensions in Offline RL

< ∃⇒

1 Background in Fenchel-Rockafellar Duality

2 Background in RL

Offline Policy Evaluation

4 Extensions in Offline RL

Kei Ishikawa

Reinforcement Learning via Fenchel-Rockafell Journal Club on January 26, 2023 4/31

A B A A B A

Fenchel Conjugate

• The Fenchel conjugate f_* of function $f:\Omega \to \mathbb{R}$ is defined as

$$f_*(y) := \max_{x \in \Omega} \langle x, y \rangle - f(x),$$

where $\langle \cdot, \cdot \rangle$ denotes the inner product defined on Ω .

• For a proper, convex, lower semi-continuous f, one has duality $f_{**} = f$; i.e,

$$f(x) = \max_{y \in \Omega^*} \langle x, y \rangle - f_*(y),$$

where Ω^* denotes the domain of f_* .

- f is proper iff $\{x \in \Omega : f(x) < \infty\}$ is non-empty and $f(x) > -\infty$ for all $x \in \Omega$.
- ► f is lower semi-continuous iff $\{x \in \Omega : f(x) > \alpha\}$ is an open set for all $\alpha \in \mathbb{R}$.

▲□▶▲□▶▲∃▶▲∃▶ ∃ のの⊙

Fenchel Conjugate

Functions	Conjugates
$\frac{1}{2}x^2$	$\frac{1}{2}y^2$
$\delta_{\{a\}}(x)^1$	$\langle a,y angle$
$\delta_{\mathbb{R}_+}(x)$	$\delta_{\mathbb{R}}(y)$
$\langle a, x \rangle + b \cdot f(x)$	$b \cdot f_*\left(\frac{y-a}{b}\right)$
f(ax)	$f_*(rac{y}{a})$
f(x+b)	$f_*(y) - \langle b, y angle$
$D_f(x \ p)$ (unrestricted x)	$\mathbb{E}_{z \sim p}[f_*(y(z))]$
$D_{\mathrm{KL}}(x p)$ where $x \in \Delta(\mathcal{Z})$	$\log \mathbb{E}_{Z \sim p}[\exp y(Z)]$

Table: Common functions and their Fenchel conjugates.

 ${}^1\delta_C$ is an indicator function of that is zero if $x \in C$ and infinity otherwise \bullet and \bullet

f-divergences

• For a convex function f and distributions p, q over some domain \mathcal{Z} , the f-divergence between them is defined as,

$$D_f(p||q) = \mathbb{E}_{z \sim q} \left[f\left(\frac{p(z)}{q(z)}\right) \right].$$

Non-negativity:

$$D_f(p||q) \ge 0, D_f(p||q) = 0 \text{ iff } p = q$$

Variational representation (not used):

$$D_f(p||q) = \sup_{\Omega \to \text{effdom}(f_*)} \mathbb{E}_p[g] - \mathbb{E}_q[f_* \circ g]$$

• Examples: KL-divergence, total variation, α -divergences

E 6 4 E 6

Fenchel-Rockafellar Duality

• Primal problem:

$$\min_{x \in \Omega} J_{\text{primal}}(x) := f(x) + g(Ax),$$

where $f, g: \Omega \to \mathbb{R}$ are convex, lower semi-continuous functions, and A is a linear operator (e.g, a matrix).

• Dual problem:

$$\max_{y \in \Omega^*} J_{\text{dual}} := -f_*(-A_*y) - g_*(y),$$

where we use A_* to denote the adjoint linear operator of A

- A_* is the linear operator for which $\langle y, Ax \rangle = \langle A_*y, x \rangle$, for all x, y.
- ▶ In the common case of A simply being a real-valued matrix, A_{*} is the transpose of A.

- A TE N A TE N

Fenchel-Rockafellar Duality

• Under mild conditions (constraint qualification), we can derive the above as

$$\begin{split} \min_{x \in \Omega} J_{\text{primal}}(x) &= \min_{x \in \Omega} f(x) + g(Ax) \\ &= \min_{x \in \Omega} \max_{y \in \Omega^*} f(x) + \langle y, Ax \rangle - g_*(y) \\ &= \max_{y \in \Omega^*} \{\min_{x \in \Omega} f(x) + \langle y, Ax \rangle\} - g_*(y) \\ &= \max_{y \in \Omega^*} \{-\max_{x \in \Omega} \langle -A_*y, x \rangle - f(x)\} - g_*(y) \\ &= \max_{y \in \Omega^*} -f_*(-A_*y) - g_*(y) \\ &= \max_{y \in \Omega^*} J_{\text{dual}}(y). \end{split}$$

• The relationship between primal and dual solutions (when ∇f_* exists)

$$x^* := \arg\min_{x \in \Omega} J_{\text{primal}}(x) = \nabla f_*(-A_*y^*)$$

A B M A B M

Two different Dual Problems of Linear Constraints)

• Fenchel-Rockafellar dual

$$\begin{split} \min_{x} f(x) \text{ s.t. } Ax &= b \\ &= \min_{x} f(x) + \delta_{\{b\}}(Ax) \\ &= \max_{y} - f_*(-A_*y) - \langle b, y \rangle \end{split}$$

Lagrange dual

$$\begin{split} \min_{x} f(x) \text{ s.t. } Ax &= b \\ &= \min_{x} f(x) + \max_{y} y^{T} (Ax - b) \\ &= \min_{x} \max_{y} f(x) + y^{T} (Ax - b) \end{split}$$

Kei Ishikawa

→ ∃ →

Background in Fenchel-Rockafellar Duality

2 Background in RL

3 Offline Policy Evaluation

4 Extensions in Offline RL

Kei Ishikawa

<日

<</p>

э

A Quick Introduction to Reinforcement Learning

Markov Processes

• Model: $(\mathcal{S}, T(s'|s), \mu_0(s_0))$

- ★ S: a set of all (discrete) states
- ★ T(s'|s): transition probability $Pr(S_{t+1} = s'|S_t = s)$
- ★ $\mu_0(s)$: probability of initial state $\Pr(S_0 = s)$
- Realization: $\{S_t\}_{t=0}^{\infty}$
- Recursive formulae for $Pr(S_t = s)$:
 - * $\Pr(S_{t+1} = s') = \sum_{s \in \mathcal{S}} T(s'|s) \Pr(S_t = s)$
 - \star Using transition operator ${\mathcal P}$ and its adjoint ${\mathcal P}_*$ defined as

$$\mathcal{P}: f(s) \mapsto \sum_{s' \in \mathcal{S}} f(s')T(s'|s) = \mathbb{E}[f(S')|S=s],$$
$$\mathcal{P}_*: f(s) \mapsto \sum_{s' \in \mathcal{S}} T(s|s')f(s'),$$

the recursive formula for $p_t(s) := \Pr(S_t = s)$ simplifies to

$$p_{t+1}(s) = \mathcal{P}_* p_t(s)$$

4月 5 4 日 5 4 日 5

A Quick Introduction to Reinforcement Learning

- Markov Decision Processes (MDPs)
 - ▶ Model: $(S, A, T(s'|s, a), \mu_0(s_0), R(s, a))$ and policy $\pi(a|s)$
 - ★ \mathcal{A} : a set of all (discrete) actions
 - * T(s'|s, a): transition probability $Pr(S_{t+1} = s'|S_t = s, A_t = a)$
 - ★ R(s, a): reward function that gives reward $r_t = R(s_t, a_t)$
 - ★ $\pi(a|s)$: action probability of $Pr(A_t = a|S_t = s)$
 - Realization: $\{(S_t, A_t)\}_{t=0}^{\infty}$
 - Recursive formulae for $Pr(S_t = s, A_t = a)$:
 - ★ $\Pr(S_{t+1} = s', A_{t+1} = a') = \pi(a'|s') \sum_{s \in S, a \in A} T(s'|s, a) \Pr(S_t = s, A_t = a)$

 \star Using transition operator \mathcal{P}^{π} and its adjoint \mathcal{P}^{π}_{*} defined as

$$\begin{aligned} \mathcal{P}^{\pi} &: f(s,a) \mapsto \sum_{s' \in \mathcal{S}, a' \in \mathcal{A}} f(s',a') \pi(a'|s') T(s'|s,a) = \mathbb{E}[f(S',A')|S' = s, A] \\ \mathcal{P}^{\pi}_{*} &: f(s,a) \mapsto \sum_{s' \in \mathcal{S}, a' \in \mathcal{A}} \pi(a|s) T(s|s',a') f(s',a'), \end{aligned}$$

the recursive formula for $p_t(s, a) := \Pr(S_t = s, A_t = a)$ simplifies to

$$p_{t+1}(s,a) = \mathcal{P}^{\pi}_* p_t(s,a)$$

A Quick Introduction to Reinforcement Learning

• Reinforcement Learning (RL)

► Given MDP $(S, A, T(s'|s, a), \mu_0(s_0), r(s, a))$ and discount rate $0 < \gamma < 1$, find an optimal policy by solving

$$\max_{\pi} \rho(\pi) := (1 - \gamma) \mathbb{E}[\sum_{t=0}^{\infty} \gamma^t R(S_t, A_t)]$$

- Online / Offline RL
 - ► Online RL: You can generate new sample trajectories {(S_t, A_t)}[∞]_{t=0} from an arbitrary (or sometimes fixed) policy π(a|s)
 - Offline RL: You can only access the recorded sample trajectories $\{(S_t, A_t)\}_{t=0}^{\infty}$ from some policy $\pi(a|s)$

Outline

Background in Fenchel-Rockafellar Duality

- 2 Background in RL
- 3 Offline Policy Evaluation
- 4 Extensions in Offline RL

Kei Ishikawa

A B A A B A

Offline Policy Evaluation with Distribution Correction

Assumptions

• Observable data: $(S', A, S) \sim \mathcal{D}$ where $(S, A) \sim d^{\mathcal{D}}(s, a)$ and $S'|S = s, A = a \sim T(s'|s, a)$

• Offline Estimation of $\rho(\pi) := (1 - \gamma) \mathbb{E}[\sum_{t=0}^{\infty} \gamma^t r(S_t, A_t)]$

- ► Let us define $d^{\pi}(s, a) := (1 \gamma) \sum_{t=0}^{\infty} \gamma^t \Pr(S_t = s, A_t = a)$, so that $\rho(\pi) = \mathbb{E}_{(S,A)\sim d^{\pi}}[r(S,A)]$.
- ▶ If we can estimate $\zeta(s,a) := \frac{d^{\pi}(s,a)}{d^{\mathcal{D}}(s,a)}$, we can estimate policy value $\rho(\pi)$ as

$$\hat{\rho}(\pi) = \frac{1}{N} \sum_{n=1}^{N} \hat{\zeta}(S_n, A_n) r(S_n, A_n)$$

where $(S_n, A_n) \sim d^{\mathcal{D}}$.

Difficulty of Path-wise Distribution Correction

- Assumption: $\mathcal{D} = \{\{(S_t^{(n)}, A_t^{(n)})\}_{t=0}^{\infty} : n = 1, \dots, N\}$ sampled from the MDP with base policy π_0 so that $d^{\mathcal{D}} = d^{\pi_0}$
- Distribution correction:

$$\rho(\pi) = (1 - \gamma) \sum_{t=0}^{\infty} \gamma^t \mathbb{E}_{\pi}[r(S_t, A_t)]$$

= $(1 - \gamma) \sum_{t=0}^{\infty} \gamma^t \mathbb{E}_{\pi_0} \left[\left(\frac{\Pr(\{(S_{\tau}, A_{\tau})\}_{\tau=0}^t | \pi)}{\Pr(\{(S_{\tau}, A_{\tau})\}_{\tau=0}^t | \pi_0)} \right) r(S_t, A_t) \right]$
= $(1 - \gamma) \sum_{t=0}^{\infty} \gamma^t \mathbb{E}_{\pi_0} \left[\prod_{\tau=0}^t \left(\frac{\pi(A_{\tau} | S_{\tau})}{\pi_0(A_{\tau} | S_{\tau})} \right) r(S_t, A_t) \right]$

► The empirical version of the above tends to have high variance, as estimated product term $\prod_{\tau=0}^{t} \left(\frac{\pi(A_{\tau}|S_{\tau})}{\pi_0(A_{\tau}|S_{\tau})} \right)$ is often difficult.

Estimation of Distribution Correction $\zeta = d^{\pi}/d^{\mathcal{D}}$

• Sufficient condition of d^{π} :

 $d^{\pi}(s,a) = (1-\gamma)\pi(a|s)\mu_0(s) + \gamma \mathcal{P}^{\pi}_* d^{\pi}(s,a) \quad \forall (s,a) \in \mathcal{S} \times \mathcal{A}$

• It follows from $d^{\pi}(s,a) := (1-\gamma) \sum_{t=0}^{\infty} (\gamma \mathcal{P}^{\pi}_*)^t (\pi \times \mu_0)(s,a)$

• Solve the equivalent optimization problem:

$$\min_{d} \mathcal{D}_f(d \| d^{\mathcal{D}})$$

subject to the above equality constraints.

Estimation of Distribution Correction $\zeta = d^{\pi}/d^{\mathcal{D}}$

• Primal:

$$\min_{d} D_{f}(d||d^{\mathcal{D}}) \text{ s.t. } (1 - \gamma \mathcal{P}^{\pi}_{*})d(s, a) = (1 - \gamma)\pi(a|s)\mu_{0}(s)$$

• Fenchel-Rockafellar Dual:

$$\max_{Q:\mathcal{S}\times\mathcal{A}\to\mathbb{R}} -\langle (1-\gamma)\pi(a|s)\mu_0(s), Q(S,A)\rangle \\ -\mathbb{E}_{(S,A)\sim d^{\mathcal{D}}} \left[f_* \left((\gamma \mathcal{P}^{\pi} - 1)Q(S,A) \right) \right] \\ = \max_{Q:\mathcal{S}\times\mathcal{A}\to\mathbb{R}} -(1-\gamma)\mathbb{E}_{(S,A)\sim\pi(a|s)\mu_0(s)} [Q(S,A)] \\ -\mathbb{E}_{(S,A)\sim d^{\mathcal{D}}} \left[f_* \left((\gamma \mathcal{P}^{\pi} - 1)Q(S,A) \right) \right]$$

► The primal solution can be recovered from dual solution $Q^*(s, a)$ as $d^{\pi}(s, a) = d^{\mathcal{D}}(s, a) \cdot f'_* \left((\gamma \mathcal{P}^{\pi} - 1)Q(s, a)\right)$

* This is because
$$d^{\pi}(s,a) = \frac{\mathrm{d}}{\mathrm{d}x(s,a)} \mathbb{E}_{(S,A)\sim d\mathcal{D}}[f_*(x)] \Big|_{x=(\gamma \mathcal{P}^{\pi}-1)Q^*}$$

Estimation of Distribution Correction $\zeta = d^{\pi}/d^{\mathcal{D}}$

• Lagrange Dual:

$$\begin{split} \min_{d:\mathcal{S}\times\mathcal{A}\to\mathbb{R}} \max_{Q:\mathcal{S}\times\mathcal{A}\to\mathbb{R}} \mathbb{E}_{(S,A)\sim d^{\mathcal{D}}} \left[f\left(\frac{d(S,A)}{d^{\mathcal{D}}(S,A)}\right) \right] \\ &+ \left\langle Q(s,a), (1-\gamma \mathcal{P}^{\pi}_{*}) \left(\frac{d(s,a)}{d^{\mathcal{D}}(s,a)}\right) d^{\mathcal{D}}(s,a) - (1-\gamma)\pi(a|s)\mu_{0}(s) \right\rangle \right\rangle \\ &= \min_{\zeta:\mathcal{S}\times\mathcal{A}\to\mathbb{R}} \max_{Q:\mathcal{S}\times\mathcal{A}\to\mathbb{R}} \mathbb{E}_{(S,A)\sim d^{\mathcal{D}}} \left[f(\zeta(S,A)) \right] \\ &- (1-\gamma)\mathbb{E}_{(S,A)\sim\pi(a|s)\mu_{0}(s)} [Q(s,a)] \\ &+ \mathbb{E}_{(S,A)\sim d^{\mathcal{D}}(s,a)} [\zeta(S,A)(1-\gamma \mathcal{P}^{\pi})Q(S,A)] \rangle \\ &= \min_{\zeta:\mathcal{S}\times\mathcal{A}\to\mathbb{R}} \max_{Q:\mathcal{S}\times\mathcal{A}\to\mathbb{R}} \mathbb{E}_{(S,A)\sim d^{\mathcal{D}}} \left[f(\zeta(S,A)) \right] \\ &- (1-\gamma)\mathbb{E}_{(S,A)\sim\pi(a|s)\mu_{0}(s)} [Q(s,a)] \\ &+ \mathbb{E} \left(\begin{array}{c} (S',A',S,A) \\ \sim \pi(a'|s')T(s'|s,a)d^{\mathcal{D}}(s,a) \end{array} \right] \left[\zeta(S,A)Q(S,A) - \zeta(S,A)\gamma Q(S',A') \right] \end{split}$$

where we used reparametrization $\zeta = d/d^{\mathcal{D}}$

A = A

Outline

Background in Fenchel-Rockafellar Duality

- 2 Background in RL
- Offline Policy Evaluation
- 4 Extensions in Offline RL

Kei Ishikawa

< 回 > < 三 > < 三 >

э

Extensions

- Undiscounted RL ($\gamma \nearrow 1$)
- Policy Optimization
- Imitation Learning

< 行

A B A A B A

э

Undiscounted RL

• We are interested in estimating

$$\rho(\pi) := \lim_{\gamma \nearrow 1} (1 - \gamma) \mathbb{E}[\sum_{t=0}^{\infty} \gamma^t r(S_t, A_t)]$$

- Stationary distribution correction
 - Let us define

$$d^{\pi}(\pi)(s,a) := \lim_{\gamma \nearrow 1} (1-\gamma) \mathbb{E}\left[\sum_{t=0}^{\infty} \gamma^t \Pr(S_t = s, A_t = a)\right]$$

so that $\rho(\pi) = \mathbb{E}_{(S,A)\sim d^{\pi}}[r(S,A)].$ • The sufficient conditions for d^{π} are

$$d^{\pi} = \mathcal{P}^{\pi}_{*} d^{\pi} \text{ and } \sum_{s \in \mathcal{S}, a \in \mathcal{A}} d^{\pi}(s, a) = 1$$

< ∃⇒

Undiscounted RL

Primal:

$$\min_d \mathcal{D}_f(d\|d^{\mathcal{D}}) \text{ s.t. } d^{\pi} = \mathcal{P}^{\pi}_* d^{\pi} \text{ and } \sum_{s \in \mathcal{S}, a \in \mathcal{A}} d^{\pi}(s, a) = 1$$

• Fenchel-Rockafellar Dual:

$$\max_{\lambda \in \mathbb{R}, Q: S \times \mathcal{A} \to \mathbb{R}} \lambda - \mathbb{E}_{(S,A) \sim d^{\mathcal{D}}} \left[f_* \left(\lambda + (\mathcal{P}^{\pi} - 1) Q(S, A) \right) \right]$$

• The primal solution can be recovered from dual solution $\lambda^*, Q^*(s, a)$ as

$$d^{\pi}(s,a) = d^{\mathcal{D}}(s,a) \cdot f'_{*} \left(\lambda^{*} + (\mathcal{P}^{\pi} - 1)Q(s,a)\right)$$

Kei Ishikawa

A B M A B M

э

Undiscounted RL

• Lagrange Dual²:

$$\begin{split} \min_{d:\mathcal{S}\times\mathcal{A}\to\mathbb{R}} \max_{\lambda\in\mathbb{R},Q:\mathcal{S}\times\mathcal{A}\to\mathbb{R}} \mathbb{E}_{(S,A)\sim d^{\mathcal{D}}} \left[f\left(\frac{d(S,A)}{d^{\mathcal{D}}(S,A)}\right) \right] \\ &+ \left\langle Q(s,a), (1-\mathcal{P}^{\pi}_{*}) \left(\frac{d(s,a)}{d^{\mathcal{D}}(s,a)}\right) d^{\mathcal{D}}(s,a) \right\rangle \\ &+ \lambda \left(1 - \sum_{s\in\mathcal{S},a\in\mathcal{A}} \left(\frac{d(s,a)}{d^{\mathcal{D}}(s,a)}\right) d^{\mathcal{D}}(s,a) \right) \\ &= \min_{\zeta:\mathcal{S}\times\mathcal{A}\to\mathbb{R}} \max_{\lambda\in\mathbb{R},Q:\mathcal{S}\times\mathcal{A}\to\mathbb{R}} \mathbb{E}_{(S,A)\sim d^{\mathcal{D}}} [f(\zeta(S,A))] + \lambda \\ &- \mathbb{E}_{\substack{(S',A',S,A)\\ \sim \pi(a'|s')T(s'|s,a)d^{\mathcal{D}}(s,a)}} \left[\zeta(S,A) \cdot (\lambda + Q(S',A') - Q(S,A)) \right] \end{split}$$

where we used reparametrization $\zeta = d/d^{\mathcal{D}}$

→ < ∃ →</p>

²This is called GenDice

Imitation Learning

- Problem Setting:
 - Assumption: $\mathcal{D} = \{\{(S_t^{(n)}, A_t^{(n)})\}_{t=0}^{\infty} : n = 1, \dots, N\}$ sampled from the MDP with base policy π_0 so that $d^{\mathcal{D}} = d^{\pi_0}$
 - We are interested in imitating π_0 with π^* so that

$$\pi^* = \arg\min_{\pi} \mathcal{D}_{\mathrm{KL}}(d^{\pi} \| d^{\mathcal{D}})$$

Imitation Learning

• Fenchel-Rockafellar Dual (Donsker-Varadhan representation):

$$\begin{aligned} \mathbf{D}_{\mathrm{KL}}(d^{\pi} \| d^{\mathcal{D}}) \\ &= \min_{d \in \Delta(\mathcal{S} \times \mathcal{A})} \mathbf{D}_{\mathrm{KL}}(d \| d^{\mathcal{D}}) \\ & \text{s.t. } d(s, a) = (1 - \gamma)\pi(a|s)\mu_0(s) + \gamma \mathcal{P}_*^{\pi}d(s, a) \\ &= \max_{\nu: \mathcal{S} \times \mathcal{A} \to \mathbb{R}} - \log \mathbb{E}_{(S,A) \sim d^{\mathcal{D}}} \left[\exp\left((1 - \gamma \mathcal{P}^{\pi})\nu(S, A)\right) \right] \\ &\quad + (1 - \gamma)\mathbb{E}_{(S,A) \sim \pi(a|s)\mu_0(s)} [\nu(S, A)] \end{aligned}$$

• Imitation Learning³:

$$\pi^* = \arg \min_{\pi} \max_{\nu: \mathcal{S} \times \mathcal{A} \to \mathbb{R}} - \log \mathbb{E}_{(S,A) \sim d^{\mathcal{D}}} \left[\exp\left((1 - \gamma \mathcal{P}^{\pi}) \nu(S, A) \right) \right] + (1 - \gamma) \mathbb{E}_{(S,A) \sim \pi(a|s) \mu_0(s)} [\nu(S, A)]$$

³This is called ValueDice

3 × < 3 ×

Policy Optimization

- Problem Setting:
 - We are interested in finding maximizer

$$\pi^* = \arg \max_{\pi} \rho(\pi) - D_f(d^{\pi} || d^{\pi_0})$$

of regularized policy value

→ < ∃ →</p>

Policy Optimization

• Fenchel-Rockafellar Dual:

$$\begin{split} \rho(\pi) &- \mathcal{D}_f(d^{\pi} \| d^{\mathcal{D}}) \\ &= \max_{d: \mathcal{S} \times \mathcal{A} \to \mathbb{R}} \mathcal{D}_f(d \| d^{\mathcal{D}}) - \mathbb{E}_{(S,A) \sim d}[r(S,A)] \\ &\text{ s.t. } d(s,a) = (1-\gamma)\pi(a|s)\mu_0(s) + \gamma \mathcal{P}_*^{\pi}d(s,a) \\ &= \min_{Q: \mathcal{S} \times \mathcal{A} \to \mathbb{R}} \mathbb{E}_{(S,A) \sim d^{\mathcal{D}}} \left[f_* \left(R(S,A) - (1-\gamma \mathcal{P}^{\pi})Q(S,A) \right) \right] \\ &+ (1-\gamma)\mathbb{E}_{(S,A) \sim \pi(a|s)\mu_0(s)}[Q(S,A)] \end{split}$$

• Policy Optimization⁴:

$$\pi^* = \arg \max_{\pi} \min_{Q: \mathcal{S} \times \mathcal{A} \to \mathbb{R}} \mathbb{E}_{(S,A) \sim d^{\mathcal{D}}} \left[f_* \left(R(S,A) - (1 - \gamma \mathcal{P}^{\pi}) Q(S,A) \right) \right] \\ + (1 - \gamma) \mathbb{E}_{(S,A) \sim \pi(a|s)\mu_0(s)} [Q(S,A)]$$

⁴This is called AlgaeDice

→ ∃ →

(My Personal) Take Aways

- Convex optimization is not only for linear/kernelized models
- Reinforcement learning has a useful linear structure
- Neural networks can be used to approximately solve these problems
- Interpreting the conditional expectation as a linear operator and taking its adjoint can be a useful trick

References

Ilya Kostrikov, Ofir Nachum, and Jonathan Tompson. Imitation learning via off-policy distribution matching. arXiv preprint arXiv:1912.05032, 2019.

Ofir Nachum, Yinlam Chow, Bo Dai, and Lihong Li.

Dualdice: Behavior-agnostic estimation of discounted stationary distribution corrections. Advances in Neural Information Processing Systems, 32, 2019.

Ofir Nachum and Bo Dai.

Reinforcement learning via fenchel-rockafellar duality. arXiv preprint arXiv:2001.01866, 2020.

Ofir Nachum, Bo Dai, Ilya Kostrikov, Yinlam Chow, Lihong Li, and Dale Schuurmans. Algaedice: Policy gradient from arbitrary experience.

arXiv preprint arXiv:1912.02074, 2019.

Ruiyi Zhang, Bo Dai, Lihong Li, and Dale Schuurmans. Gendice: Generalized offline estimation of stationary values. *arXiv preprint arXiv:2002.09072*, 2020.

< □ > < □ > < □ > < □ > < □ > < □ >